Abstract:This paper aims at computing the capacity-distortion-cost (CDC) function for continuous memoryless channels, which is defined as the supremum of the mutual information between channel input and output, constrained by an input cost and an expected distortion of estimating channel state. Solving the optimization problem is challenging because the input distribution does not lie in a finite-dimensional Euclidean space and the optimal estimation function has no closed form in general. We propose to adopt the Wasserstein proximal point method and parametric models such as neural networks (NNs) to update the input distribution and estimation function alternately. To implement it in practice, the importance sampling (IS) technique is used to calculate integrals numerically, and the Wasserstein gradient descent is approximated by pushing forward particles. The algorithm is then applied to an integrated sensing and communications (ISAC) system, validating theoretical results at minimum and maximum distortion as well as the random-deterministic trade-off.
Abstract:High-precision ranging plays a crucial role in future 6G Integrated Sensing and Communication (ISAC) systems. To improve the ranging performance while maximizing the resource utilization efficiency, future 6G ISAC networks have to reuse data payload signals for both communication and sensing, whose inherent randomness may deteriorate the ranging performance. To address this issue, this paper investigates the power allocation (PA) design for an OFDM-based ISAC system under random signaling, aiming to reduce the ranging sidelobe level of both periodic and aperiodic auto-correlation functions (P-ACF and A-ACF) of the ISAC signal. Towards that end, we first derive the closed-form expressions of the average squared P-ACF and A-ACF, and then propose to minimize the expectation of the integrated sidelobe level (EISL) under arbitrary constellation mapping. We then rigorously prove that the uniform PA scheme achieves the global minimum of the EISL for both P-ACF and A-ACF. As a step further, we show that this scheme also minimizes the P-ACF sidelobe level at every lag. Moreover, we extend our analysis to the P-ACF case with frequency-domain zero-padding, which is a typical approach to improve the ranging resolution. We reveal that there exists a tradeoff between sidelobe level and mainlobe width, and propose a project gradient descent algorithm to seek a locally optimal PA scheme that reduces the EISL. Finally, we validate our theoretical findings through extensive simulation results, confirming the effectiveness of the proposed PA methods in reducing the ranging sidelobe level for random OFDM signals.
Abstract:Large language models (LLMs) have shown promise in automating travel planning, yet they often fall short in addressing nuanced spatiotemporal rationality. While existing benchmarks focus on basic plan validity, they neglect critical aspects such as route efficiency, POI appeal, and real-time adaptability. This paper introduces TP-RAG, the first benchmark tailored for retrieval-augmented, spatiotemporal-aware travel planning. Our dataset includes 2,348 real-world travel queries, 85,575 fine-grain annotated POIs, and 18,784 high-quality travel trajectory references sourced from online tourist documents, enabling dynamic and context-aware planning. Through extensive experiments, we reveal that integrating reference trajectories significantly improves spatial efficiency and POI rationality of the travel plan, while challenges persist in universality and robustness due to conflicting references and noisy data. To address these issues, we propose EvoRAG, an evolutionary framework that potently synergizes diverse retrieved trajectories with LLMs' intrinsic reasoning. EvoRAG achieves state-of-the-art performance, improving spatiotemporal compliance and reducing commonsense violation compared to ground-up and retrieval-augmented baselines. Our work underscores the potential of hybridizing Web knowledge with LLM-driven optimization, paving the way for more reliable and adaptive travel planning agents.
Abstract:Communication-centric Integrated Sensing and Communication (ISAC) has been recognized as a promising methodology to implement wireless sensing functionality over existing network architectures, due to its cost-effectiveness and backward compatibility to legacy cellular systems. However, the inherent randomness of the communication signal may incur huge fluctuations in sensing capabilities, leading to unfavorable detection and estimation performance. To address this issue, we elaborate on random ISAC signal processing methods in this article, aiming at improving the sensing performance without unduly deteriorating the communication functionality. Specifically, we commence by discussing the fundamentals of sensing with random communication signals, including the performance metrics and optimal ranging waveforms. Building on these concepts, we then present a general framework for random ISAC signal transmission, followed by an in-depth exploration of time-domain pulse shaping, frequency-domain constellation shaping, and spatial-domain precoding methods. We provide a comprehensive overview of each of these topics, including models, results, and design guidelines. Finally, we conclude this article by identifying several promising research directions for random ISAC signal transmission.
Abstract:Integrated Sensing and Communications (ISAC) enables efficient spectrum utilization and reduces hardware costs for beyond 5G (B5G) and 6G networks, facilitating intelligent applications that require both high-performance communication and precise sensing capabilities. This survey provides a comprehensive review of the evolution of ISAC over the years. We examine the expansion of the spectrum across RF and optical ISAC, highlighting the role of advanced technologies, along with key challenges and synergies. We further discuss the advancements in network architecture from single-cell to multi-cell systems, emphasizing the integration of collaborative sensing and interference mitigation strategies. Moreover, we analyze the progress from single-modal to multi-modal sensing, with a focus on the integration of edge intelligence to enable real-time data processing, reduce latency, and enhance decision-making. Finally, we extensively review standardization efforts by 3GPP, IEEE, and ITU, examining the transition of ISAC-related technologies and their implications for the deployment of 6G networks.
Abstract:In recent years, UWB has garnered widespread attention in academia and industry due to its low power consumption, wide bandwidth, and high time resolution characteristics. This paper introduces the design of an asynchronous IR-UWB integrated communication and localization (ICL) downlink network, which employs unified waveforms to enable simultaneous data transmission and localization. A differential sequential detection strategy has been proposed for data demodulation. To address errors caused by symbol misalignment, a novel symbol confidence metric model is introduced to ensure reliable pulse detection and time-of-arrival (TOA) estimation. Additionally, an asynchronous start-of-frame delimiter (SFD) detection model has been constructed to guide parameter optimization for practical applications. Furthermore, the clock drift estimation has been improved by leveraging the confidence metric within a modified weighted least squares (MWLS) framework. Simulation results demonstrate that the proposed system achieves reliable clock drift estimation, communication, and self-localization simultaneously. The operational range of the confidence metric required for these outcomes is also quantified, providing valuable insights for parameter design and system implementation. Finally, the agent localization accuracy can be achieved within 10 cm at over 90\% confidence, with commercial UWB devices according to practical measurements.
Abstract:Tool learning has emerged as a promising direction by extending Large Language Models' (LLMs) capabilities with external tools. Existing tool learning studies primarily focus on the general-purpose tool-use capability, which addresses explicit user requirements in instructions. However, they overlook the importance of personalized tool-use capability, leading to an inability to handle implicit user preferences. To address the limitation, we first formulate the task of personalized tool learning, which integrates user's interaction history towards personalized tool usage. To fill the gap of missing benchmarks, we construct PEToolBench, featuring diverse user preferences reflected in interaction history under three distinct personalized settings, and encompassing a wide range of tool-use scenarios. Moreover, we propose a framework PEToolLLaMA to adapt LLMs to the personalized tool learning task, which is trained through supervised fine-tuning and direct preference optimization. Extensive experiments on PEToolBench demonstrate the superiority of PEToolLLaMA over existing LLMs.
Abstract:With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LL
Abstract:Next-generation wireless networks are conceived to provide reliable and high-data-rate communication services for diverse scenarios, such as vehicle-to-vehicle, unmanned aerial vehicles, and satellite networks. The severe Doppler spreads in the underlying time-varying channels induce destructive inter-carrier interference (ICI) in the extensively adopted orthogonal frequency division multiplexing (OFDM) waveform, leading to severe performance degradation. This calls for a new air interface design that can accommodate the severe delay-Doppler spreads in highly dynamic channels while possessing sufficient flexibility to cater to various applications. This article provides a comprehensive overview of a promising chirp-based waveform named affine frequency division multiplexing (AFDM). It is featured with two tunable parameters and achieves optimal diversity order in doubly dispersive channels (DDC). We study the fundamental principle of AFDM, illustrating its intrinsic suitability for DDC. Based on that, several potential applications of AFDM are explored. Furthermore, the major challenges and the corresponding solutions of AFDM are presented, followed by several future research directions. Finally, we draw some instructive conclusions about AFDM, hoping to provide useful inspiration for its development.
Abstract:This paper proposes an integrated sensing and communications (ISAC) system based on affine frequency division multiplexing (AFDM) waveform. To this end, a metric set is designed according to not only the maximum tolerable delay/Doppler, but also the weighted spectral efficiency as well as the outage/error probability of sensing and communications. This enables the analytical investigation of the performance trade-offs of AFDM-ISAC system using the derived analytical relation among metrics and AFDM waveform parameters. Moreover, by revealing that delay and the integral/fractional parts of normalized Doppler can be decoupled in the affine Fourier transform-Doppler domain, an efficient estimation method is proposed for our AFDM-ISAC system, whose unambiguous Doppler can break through the limitation of subcarrier spacing. Theoretical analyses and numerical results verify that our proposed AFDM-ISAC system may significantly enlarge unambiguous delay/Doppler while possessing good spectral efficiency and peak-to-sidelobe level ratio in high-mobility scenarios.